Lumiera  0.pre.03
»edit your freedom«
test-chain-load-test.cpp
Go to the documentation of this file.
1 /*
2  TestChainLoad(Test) - verify diagnostic setup to watch scheduler activities
3 
4  Copyright (C)
5  2023, Hermann Vosseler <Ichthyostega@web.de>
6 
7   **Lumiera** is free software; you can redistribute it and/or modify it
8   under the terms of the GNU General Public License as published by the
9   Free Software Foundation; either version 2 of the License, or (at your
10   option) any later version. See the file COPYING for further details.
11 
12 * *****************************************************************/
13 
19 #include "lib/test/run.hpp"
20 #include "lib/test/test-helper.hpp"
21 #include "lib/format-string.hpp"
22 #include "test-chain-load.hpp"
23 #include "vault/gear/job.h"
24 #include "lib/util.hpp"
25 
26 #include <array>
27 
28 
29 using util::_Fmt;
30 using util::isnil;
31 using util::isSameObject;
32 using std::array;
33 
34 
35 namespace vault{
36 namespace gear {
37 namespace test {
38 
39  namespace { // shorthands and parameters for test...
40 
43  using Node = ChainLoad16::Node;
44  auto isStartNode = [](Node& n){ return isStart(n); };
45  auto isInnerNode = [](Node& n){ return isInner(n); };
46  auto isExitNode = [](Node& n){ return isExit(n); };
47 
48  }//(End)test definitions
49 
50 
51 
52 
53  /*****************************************************************/
62  class TestChainLoad_test : public Test
63  {
64 
65  virtual void
66  run (Arg)
67  {
68  seedRand();
69  usageExample();
70  verify_Node();
82  }
83 
84 
89  void
91  {
92  auto testLoad =
93  TestChainLoad{64}
95  .buildTopology();
96 
97  // while building the graph, node hashes are computed
98  CHECK (testLoad.getHash() == 0x554F5086DE5B0861);
99 
100 
101  BlockFlowAlloc bFlow;
102  EngineObserver watch;
103  Scheduler scheduler{bFlow, watch};
104 
105  testLoad.setupSchedule(scheduler)
106  .launch_and_wait();
107 
108  // invocation through Scheduler has reproduced all node hashes
109  CHECK (testLoad.getHash() == 0x554F5086DE5B0861);
110  }
111 
112 
113 
116  void
118  {
119  Node n0; // Default-created empty Node
120  CHECK (n0.hash == 0);
121  CHECK (n0.level == 0);
122  CHECK (n0.weight == 0);
123  CHECK (n0.pred.size() == 0 );
124  CHECK (n0.succ.size() == 0 );
125  CHECK (n0.pred == Node::Tab{0});
126  CHECK (n0.succ == Node::Tab{0});
127 
128  Node n1{23}, n2{55}; // further Nodes with initial seed hash
129  CHECK (n1.hash == 23);
130  CHECK (n2.hash == 55);
131 
132  CHECK (0 == n0.calculate()); // hash calculation is NOP on unconnected Nodes
133  CHECK (0 == n0.hash);
134  CHECK (23 == n1.calculate());
135  CHECK (23 == n1.hash);
136  CHECK (55 == n2.calculate());
137  CHECK (55 == n2.hash);
138 
139  n0.addPred(n1); // establish bidirectional link between Nodes
140  CHECK (isSameObject (*n0.pred[0], n1));
141  CHECK (isSameObject (*n1.succ[0], n0));
142  CHECK (not n0.pred[1]);
143  CHECK (not n1.succ[1]);
144  CHECK (n2.pred == Node::Tab{0});
145  CHECK (n2.succ == Node::Tab{0});
146 
147  n2.addSucc(n0); // works likewise in the other direction
148  CHECK (isSameObject (*n0.pred[0], n1));
149  CHECK (isSameObject (*n0.pred[1], n2)); // next link added into next free slot
150  CHECK (isSameObject (*n2.succ[0], n0));
151  CHECK (not n0.pred[2]);
152  CHECK (not n2.succ[1]);
153 
154  CHECK (n0.hash == 0);
155  n0.calculate(); // but now hash calculation combines predecessors
156  CHECK (n0.hash == 0x53F8F4753B85558A);
157 
158  Node n00; // another Node...
159  n00.addPred(n2) // just adding the predecessors in reversed order
160  .addPred(n1);
161 
162  CHECK (n00.hash == 0);
163  n00.calculate(); // ==> hash is different, since it depends on order
164  CHECK (n00.hash == 0xECA6BE804934CAF2);
165  CHECK (n0.hash == 0x53F8F4753B85558A);
166 
167  CHECK (isSameObject (*n1.succ[0], n0));
168  CHECK (isSameObject (*n1.succ[1], n00));
169  CHECK (isSameObject (*n2.succ[0], n0));
170  CHECK (isSameObject (*n2.succ[1], n00));
171  CHECK (isSameObject (*n00.pred[0], n2));
172  CHECK (isSameObject (*n00.pred[1], n1));
173  CHECK (isSameObject (*n0.pred[0], n1));
174  CHECK (isSameObject (*n0.pred[1], n2));
175 
176  CHECK (n00.hash == 0xECA6BE804934CAF2);
177  n00.calculate(); // calculation is NOT idempotent (inherently statefull)
178  CHECK (n00.hash == 0xB682F06D29B165C0);
179 
180  CHECK (isnil (n0.succ)); // number of predecessors or successors properly accounted for
181  CHECK (isnil (n00.succ));
182  CHECK (n00.succ.empty());
183  CHECK (0 == n00.succ.size());
184  CHECK (2 == n00.pred.size());
185  CHECK (2 == n0.pred.size());
186  CHECK (2 == n1.succ.size());
187  CHECK (2 == n2.succ.size());
188  CHECK (isnil (n1.pred));
189  CHECK (isnil (n2.pred));
190  }
191 
192 
193 
201  void
203  {
204  auto graph = ChainLoad16{32}
205  .buildTopology();
206 
207  CHECK (graph.topLevel() == 31);
208  CHECK (graph.getSeed() == 0);
209  CHECK (graph.getHash() == 0xB3445F1240A1B05F);
210 
211  auto* node = & *graph.allNodes();
212  CHECK (node->hash == graph.getSeed());
213  CHECK (node->succ.size() == 1);
214  CHECK (isSameObject(*node, *node->succ[0]->pred[0]));
215 
216  size_t steps{0};
217  while (not isnil(node->succ))
218  {// verify node connectivity
219  ++steps;
220  node = node->succ[0];
221  CHECK (steps == node->level);
222  CHECK (1 == node->pred.size());
223  size_t exHash = node->hash;
224 
225  // recompute the hash -> reproducible
226  node->hash = 0;
227  node->calculate();
228  CHECK (exHash == node->hash);
229 
230  // explicitly compute the hash using boost::hash
231  node->hash = 0;
232  boost::hash_combine (node->hash, node->pred[0]->hash);
233  CHECK (exHash == node->hash);
234  }
235  // got a complete chain using all allocated nodes
236  CHECK (steps == 31);
237  CHECK (steps == graph.topLevel());
238  CHECK (node->hash == 0x5CDF544B70E59866);
239 
240  // Since this graph has only a single exit-node,
241  // the global hash of the graph is derived from this hash
242  size_t globalHash{0};
243  boost::hash_combine (globalHash, node->hash);
244  CHECK (globalHash == graph.getHash());
245  CHECK (globalHash == 0xB3445F1240A1B05F);
246  }
247 
248 
249 
250 
251 
261  void
263  {
264  ChainLoad16 graph{32};
265 
266  // moderate symmetrical expansion with 40% probability and maximal +2 links
267  graph.expansionRule(graph.rule().probability(0.4).maxVal(2))
268  .buildTopology()
269 // .printTopologyDOT()
270 // .printTopologyStatistics()
271  ;
272  CHECK (graph.getHash() == 0x6EDD7B92F12E9A37);
273 
274  auto stat = graph.computeGraphStatistics();
275  CHECK (stat.indicators[STAT_NODE].cnt == 32); // the 32 Nodes...
276  CHECK (stat.levels == 11); // ... were organised into 11 levels
277  CHECK (stat.indicators[STAT_FORK].cnt == 4); // we got 4 »Fork« events
278  CHECK (stat.indicators[STAT_SEED].cnt == 1); // one start node
279  CHECK (stat.indicators[STAT_EXIT].cnt == 1); // and one exit node at end
280  CHECK (stat.indicators[STAT_NODE].pL == "2.9090909"_expect); // ∅ 3 Nodes / level
281  CHECK (stat.indicators[STAT_NODE].cL == "0.640625"_expect); // with Node density concentrated towards end
282 
283 
284  // with additional re-shuffling, probability acts independent in each branch
285  // leading to more chances to draw a »fork«, leading to a faster expanding graph
286  graph.expansionRule(graph.rule().probability(0.4).maxVal(2).shuffle(23))
287  .buildTopology()
288 // .printTopologyDOT()
289 // .printTopologyStatistics()
290  ;
291  CHECK (graph.getHash() == 0x710D010554FEA614);
292 
293  stat = graph.computeGraphStatistics();
294  CHECK (stat.levels == 7); // expands faster, with only 7 levels
295  CHECK (stat.indicators[STAT_NODE].pL == "4.5714286"_expect); // this time ∅ 4.6 Nodes / level
296  CHECK (stat.indicators[STAT_FORK].cnt == 7); // 7 »Fork« events
297  CHECK (stat.indicators[STAT_EXIT].cnt == 10); // but 10 »Exit« nodes....
298  CHECK (stat.indicators[STAT_JOIN].cnt == 1); // and even one »Join« node....
299  CHECK (stat.indicators[STAT_EXIT].cL == 1); // which are totally concentrated towards end
300  CHECK (stat.indicators[STAT_JOIN].cL == 1); // when nodes are exhausted
301 
302 
303  // if the generation is allowed to run for longer,
304  // while more constrained in width...
305  TestChainLoad<8> gra_2{256};
306  gra_2.expansionRule(gra_2.rule().probability(0.4).maxVal(2).shuffle(23))
307  .buildTopology()
308 // .printTopologyDOT()
309 // .printTopologyStatistics()
310  ;
311  CHECK (gra_2.getHash() == 0x619491B22C3F8A6F);
312 
313  stat = gra_2.computeGraphStatistics();
314  CHECK (stat.levels == 36); // much more levels, as can be expected
315  CHECK (stat.indicators[STAT_NODE].pL == "7.1111111"_expect); // ∅ 7 Nodes per level
316  CHECK (stat.indicators[STAT_JOIN].pL == "0.77777778"_expect); // but also almost one join per level to deal with the limitation
317  CHECK (stat.indicators[STAT_FORK].frac == "0.24609375"_expect); // 25% forks (there is just not enough room for more forks)
318  CHECK (stat.indicators[STAT_JOIN].frac == "0.109375"_expect); // and 10% joins
319  CHECK (stat.indicators[STAT_EXIT].cnt == 3); // ...leading to 3 »Exit« nodes
320  CHECK (stat.indicators[STAT_EXIT].cL == 1); // ....located at the very end
321  }
322 
323 
324 
325 
326 
333  void
335  {
336  ChainLoad16 graph{32};
337 
338  // expand immediately at start and then gradually reduce / join chains
339  graph.expansionRule(graph.rule_atStart(8))
340  .reductionRule(graph.rule().probability(0.2).maxVal(3).shuffle(555))
341  .buildTopology()
342 // .printTopologyDOT()
343 // .printTopologyStatistics()
344  ;
345  CHECK (graph.getHash() == 0x3E9BFAE5E686BEB4);
346 
347  auto stat = graph.computeGraphStatistics();
348  CHECK (stat.levels == 8); // This connection pattern filled 8 levels
349  CHECK (stat.indicators[STAT_JOIN].cnt == 4); // we got 4 »Join« events (reductions=
350  CHECK (stat.indicators[STAT_FORK].cnt == 1); // and the single expansion/fork
351  CHECK (stat.indicators[STAT_FORK].cL == 0.0); // ...sitting right at the beginning
352  CHECK (stat.indicators[STAT_NODE].cL == "0.42857143"_expect); // Nodes are concentrated towards the beginning
353 
354 
355  // expansion and reduction can counterbalance each other
356  graph.expansionRule(graph.rule().probability(0.2).maxVal(3).shuffle(555))
357  .reductionRule(graph.rule().probability(0.2).maxVal(3).shuffle(555))
358  .buildTopology()
359 // .printTopologyDOT()
360 // .printTopologyStatistics()
361  ;
362  CHECK (graph.getHash() == 0xB0335595D34F1D8D);
363 
364  stat = graph.computeGraphStatistics();
365  CHECK (stat.levels == 11); // This example runs a bit longer
366  CHECK (stat.indicators[STAT_NODE].pL == "2.9090909"_expect); // in the middle threading 3-5 Nodes per Level
367  CHECK (stat.indicators[STAT_FORK].cnt == 5); // with 5 expansions
368  CHECK (stat.indicators[STAT_JOIN].cnt == 3); // and 3 reductions
369  CHECK (stat.indicators[STAT_FORK].cL == 0.5); // forks dominating earlier
370  CHECK (stat.indicators[STAT_JOIN].cL == "0.73333333"_expect); // while joins need forks as prerequisite
371 
372 
373  // expansion bursts can be balanced with a heightened reduction intensity
374  graph.expansionRule(graph.rule().probability(0.3).maxVal(4).shuffle(555))
375  .reductionRule(graph.rule().probability(0.9).maxVal(2).shuffle(555))
376  .buildTopology()
377 // .printTopologyDOT()
378 // .printTopologyStatistics()
379  ;
380  CHECK (graph.getHash() == 0x220A2E81F65146FC);
381 
382  stat = graph.computeGraphStatistics();
383  CHECK (stat.levels == 12); // This graph has a similar outline
384  CHECK (stat.indicators[STAT_NODE].pL == "2.6666667"_expect); // in the middle threading 3-5 Nodes per Level
385  CHECK (stat.indicators[STAT_FORK].cnt == 7); // ...yet with quite different internal structure
386  CHECK (stat.indicators[STAT_JOIN].cnt == 9); //
387  CHECK (stat.indicators[STAT_FORK].cL == "0.41558442"_expect);
388  CHECK (stat.indicators[STAT_JOIN].cL == "0.62626263"_expect);
389  CHECK (stat.indicators[STAT_FORK].pLW == "0.19583333"_expect); // while the densities of forks and joins almost match,
390  CHECK (stat.indicators[STAT_JOIN].pLW == "0.26527778"_expect); // a slightly higher reduction density leads to convergence eventually
391  }
392 
393 
394 
395 
396 
402  void
404  {
405  ChainLoad16 graph{32};
406 
407  // randomly start new chains, to be carried-on linearly
408  graph.seedingRule(graph.rule().probability(0.2).maxVal(3).shuffle())
409  .buildTopology()
410 // .printTopologyDOT()
411 // .printTopologyStatistics()
412  ;
413  CHECK (graph.getHash() == 0xBC35A96B3CE1F39F);
414 
415  auto stat = graph.computeGraphStatistics();
416  CHECK (stat.levels == 7); // 7 Levels...
417  CHECK (stat.indicators[STAT_SEED].cnt == 12); // overall 12 »Seed« events generated several ongoing chains
418  CHECK (stat.indicators[STAT_FORK].cnt == 0); // yet no branching/expanding
419  CHECK (stat.indicators[STAT_LINK].cnt == 14); // thus more and more chains were just carried on
420  CHECK (stat.indicators[STAT_LINK].pL == 2); // on average 2-3 per level are continuations
421  CHECK (stat.indicators[STAT_NODE].pL == "4.5714286"_expect); // leading to ∅ 4.5 Nodes per level
422  CHECK (stat.indicators[STAT_NODE].cL == "0.734375"_expect); // with nodes amassing towards the end
423  CHECK (stat.indicators[STAT_LINK].cL == "0.64285714"_expect); // because there are increasingly more links to carry-on
424  CHECK (stat.indicators[STAT_JOIN].cL == 1); // while joining only happens at the very end
425 
426 
427  // combining random seed nodes with reduction leads to a processing pattern
428  // with side-chaines successively joined into a single common result
429  graph.seedingRule(graph.rule().probability(0.2).maxVal(3).shuffle())
430  .reductionRule(graph.rule().probability(0.9).maxVal(2))
431  .buildTopology()
432 // .printTopologyDOT()
433 // .printTopologyStatistics()
434  ;
435  CHECK (graph.getHash() == 0x3DFA720156540247);
436 
437  stat = graph.computeGraphStatistics();
438  CHECK (stat.indicators[STAT_SEED].cnt == 11); // the same number of 11 »Seed« events
439  CHECK (stat.indicators[STAT_JOIN].cnt == 6); // but now 6 joining nodes
440  CHECK (stat.indicators[STAT_LINK].cnt == 15); // and less carry-on
441  CHECK (stat.indicators[STAT_FORK].cnt == 0); // no branching
442  CHECK (stat.indicators[STAT_NODE].pL == 3.2); // leading a slightly leaner graph with ∅ 3.2 Nodes per level
443  CHECK (stat.indicators[STAT_NODE].cL == "0.5625"_expect); // and also slightly more evenly spaced this time
444  CHECK (stat.indicators[STAT_LINK].cL == "0.55555556"_expect); // links are also more encountered in the middle
445  CHECK (stat.indicators[STAT_JOIN].cL == "0.72222222"_expect); // and also joins are happening underway
446  CHECK (stat.levels == 10); // mostly because a leaner graph takes longer to use 32 Nodes
447  }
448 
449 
450 
451 
452 
459  void
461  {
462  ChainLoad16 graph{32};
463 
464  // terminate chains randomly
465  graph.pruningRule(graph.rule().probability(0.2))
466  .buildTopology()
467 // .printTopologyDOT()
468 // .printTopologyStatistics()
469  ;
470  CHECK (graph.getHash() == 0x660BD1CD261A990);
471 
472  auto stat = graph.computeGraphStatistics();
473  CHECK (stat.levels == 32); // only a single line of connections...
474  CHECK (stat.segments == 8); // albeit severed into 8 segments
475  CHECK (stat.indicators[STAT_NODE].pS == 4); // with always 4 Nodes per segment
476  CHECK (stat.indicators[STAT_NODE].pL == 1); // and only ever a single node per level
477  CHECK (stat.indicators[STAT_SEED].cnt == 8); // consequently we get 8 »Seed« nodes
478  CHECK (stat.indicators[STAT_EXIT].cnt == 8); // 8 »Exit« nodes
479  CHECK (stat.indicators[STAT_LINK].cnt == 16); // and 16 interconnecting links
480 
481 
482  // combined with expansion, several tree-shaped segments emerge
483  graph.pruningRule(graph.rule().probability(0.2))
484  .expansionRule(graph.rule().probability(0.6))
485  .setSeed(10101)
486  .buildTopology()
487 // .printTopologyDOT()
488 // .printTopologyStatistics()
489  ;
490  CHECK (graph.getHash() == 0x1D0A7C39647340AA);
491 
492  stat = graph.computeGraphStatistics();
493  CHECK (stat.levels == 14); //
494  CHECK (stat.segments == 5); // this time the graph is segregated into 5 parts
495  CHECK (stat.indicators[STAT_NODE].pS == "6.4"_expect); // with 4 Nodes per segment
496  CHECK (stat.indicators[STAT_FORK].sL == "0"_expect); // where »Fork« is always placed at the beginning of each segment
497  CHECK (stat.indicators[STAT_EXIT].sL == "1"_expect); // and several »Exit« at the end
498  CHECK (stat.indicators[STAT_EXIT].pS == "3"_expect); // with always 3 exits per segment
499  CHECK (stat.indicators[STAT_SEED].cnt == 5); // so overall we get 5 »Seed« nodes
500  CHECK (stat.indicators[STAT_FORK].cnt == 5); // 5 »Fork« nodes
501  CHECK (stat.indicators[STAT_EXIT].cnt == 15); // 15 »Exit« nodes
502  CHECK (stat.indicators[STAT_LINK].cnt == 12); // and 12 interconnecting links
503  CHECK (stat.indicators[STAT_NODE].pL == "2.2857143"_expect); // leading to ∅ ~2 Nodes per level
504 
505 
506  // however, by chance, with more randomised pruning points...
507  graph.pruningRule(graph.rule().probability(0.2).shuffle(5))
508  .expansionRule(graph.rule().probability(0.6))
509  .setSeed(10101)
510  .buildTopology()
511 // .printTopologyDOT()
512 // .printTopologyStatistics()
513  ;
514  CHECK (graph.getHash() == 0x12BB22F76ECC5C1B);
515 
516  stat = graph.computeGraphStatistics();
517  CHECK (stat.segments == 1); // ...the graph can evade severing altogether
518  CHECK (stat.indicators[STAT_FORK].cnt == 3); // with overall 3 »Fork«
519  CHECK (stat.indicators[STAT_EXIT].cnt == 10); // and 10 »Exit« nodes
520  CHECK (stat.indicators[STAT_EXIT].pL == "1.6666667"_expect); // ∅ 1.6 exits per level
521  CHECK (stat.indicators[STAT_NODE].pL == "5.3333333"_expect); // ∅ 5.3 nodes per level
522 
523 
524  graph.expansionRule(graph.rule()); // reset
525 
526 
527  // combined with a special seeding rule,
528  // which injects /another seed/ in the next level after each seed,
529  // an equilibrium of chain seeding and termination can be achieved...
530  graph.seedingRule(graph.rule_atStart(1))
531  .pruningRule(graph.rule().probability(0.2))
532  .setSeed(10101)
533  .buildTopology()
534 // .printTopologyDOT()
535 // .printTopologyStatistics()
536  ;
537  CHECK (graph.getHash() == 0xBFFA04FE8202C708);
538 
539  // NOTE: this example produced 11 disjoint graph parts,
540  // which however start and end interleaved
541  stat = graph.computeGraphStatistics();
542  CHECK (stat.levels == 12); // Generation carries on for 12 levels
543  CHECK (stat.segments == 1); // NOTE: the detection of segments FAILS here (due to interleaved starts)
544  CHECK (stat.indicators[STAT_SEED].cnt == 12); // 12 »Seed« nodes
545  CHECK (stat.indicators[STAT_EXIT].cnt == 11); // 11 »Exit« nodes (including the isolated, last one)
546  CHECK (stat.indicators[STAT_LINK].cnt == 10); // 10 interconnecting links
547  CHECK (stat.indicators[STAT_JOIN].cnt == 1); // and one additional »Join«
548  CHECK (stat.indicators[STAT_JOIN].cL == "1"_expect); // ....appended at graph completion
549  CHECK (stat.indicators[STAT_NODE].pL == "2.6666667"_expect); // overall ∅ 2⅔ nodes per level (converging ⟶ 3)
550  CHECK (stat.indicators[STAT_NODE].cL == "0.52840909"_expect); // with generally levelled distribution
551  CHECK (stat.indicators[STAT_SEED].cL == "0.5"_expect); // also for the seeds
552  CHECK (stat.indicators[STAT_EXIT].cL == "0.62809917"_expect); // and the exits
553 
554 
555  // The next example is »interesting« insofar it shows self-similarity
556  // The generation is entirely repetitive and locally predictable,
557  // producing an ongoing sequence of small graph segments,
558  // partially overlapping with interwoven starts.
559  graph.seedingRule(graph.rule().fixedVal(1))
560  .pruningRule(graph.rule().probability(0.5))
561  .reductionRule(graph.rule().probability(0.8).maxVal(4))
562  .setSeed(10101)
563  .buildTopology()
564 // .printTopologyDOT()
565 // .printTopologyStatistics()
566  ;
567  CHECK (graph.getHash() == 0xFB0A0EA9B7072507);
568 
569  stat = graph.computeGraphStatistics();
570  CHECK (stat.levels == 8); // Generation carries on for 13 levels
571  CHECK (stat.indicators[STAT_JOIN].pL == 1); // with one »Join« event per level on average
572  CHECK (stat.indicators[STAT_SEED].cnt == 22); // seeds are injected with /fixed rate/, meaning that
573  CHECK (stat.indicators[STAT_SEED].pL == 2.75); // there is one additional seed for every node in previous level
574  }
575 
576 
577 
578 
579 
598  void
600  {
601  ChainLoad16 graph{256};
602 
603  // This example creates a repetitive, non-expanding stable pattern
604  // comprised of four small graph segments, generated interleaved
605  // Explanation: rule_atLink() triggers when the preceding node is a »Link«
606  graph.seedingRule(graph.rule_atLink(1))
607  .pruningRule(graph.rule().probability(0.4))
608  .reductionRule(graph.rule().probability(0.6).maxVal(5).minVal(2))
609  .setSeed(23)
610  .buildTopology()
611 // .printTopologyDOT()
612 // .printTopologyStatistics()
613  ;
614  CHECK (graph.getHash() == 0x6B5D7BD3130044E2);
615 
616  auto stat = graph.computeGraphStatistics();
617  CHECK (stat.indicators[STAT_NODE].cL == "0.50509511"_expect); // The resulting distribution of nodes is stable and balanced
618  CHECK (stat.levels == 93); // ...arranging the 256 nodes into 93 levels
619  CHECK (stat.indicators[STAT_NODE].pL == "2.7526882"_expect); // ...with ∅ 2.7 nodes per level
620  CHECK (stat.indicators[STAT_SEED].pL == "1.0537634"_expect); // comprised of ∅ 1 seed per level
621  CHECK (stat.indicators[STAT_JOIN].pL == "0.48387097"_expect); // ~ ∅ ½ join per level
622  CHECK (stat.indicators[STAT_EXIT].pL == "0.34408602"_expect); // ~ ∅ ⅓ exit per level
623  CHECK (stat.indicators[STAT_SEED].frac == "0.3828125"_expect); // overall, 38% nodes are seeds
624  CHECK (stat.indicators[STAT_EXIT].frac == "0.125"_expect); // and ⅛ are exit nodes
625  CHECK (stat.indicators[STAT_SEED].cLW == "0.49273514"_expect); // the density centre of all node kinds
626  CHECK (stat.indicators[STAT_LINK].cLW == "0.49588657"_expect); // ...is close to the middle
627  CHECK (stat.indicators[STAT_JOIN].cLW == "0.52481335"_expect);
628  CHECK (stat.indicators[STAT_EXIT].cLW == "0.55716297"_expect);
629 
630 
631 
632  // with only a slight increase in pruning probability
633  // the graph goes into a stable repetition loop rather,
634  // repeating a single shape with 3 seeds, 3 links and one 3-fold join as exit
635  graph.seedingRule(graph.rule_atLink(1))
636  .pruningRule(graph.rule().probability(0.5))
637  .reductionRule(graph.rule().probability(0.6).maxVal(5).minVal(2))
638  .setSeed(23)
639  .buildTopology()
640 // .printTopologyDOT()
641 // .printTopologyStatistics()
642  ;
643  CHECK (graph.getHash() == 0x20122CF2A1F301D1);
644 
645  stat = graph.computeGraphStatistics();
646  CHECK (stat.levels == 77); //
647  CHECK (stat.indicators[STAT_NODE].pL == "3.3246753"_expect); // ∅ 3.3 nodes per level
648  CHECK (stat.indicators[STAT_SEED].frac == "0.421875"_expect); // 42% seed
649  CHECK (stat.indicators[STAT_EXIT].frac == "0.14453125"_expect); // 14% exit
650 
651 
652 
653  // The next example uses a different generation approach:
654  // Here, seeding happens randomly, while every join immediately
655  // forces a prune, so all joins become exit nodes.
656  // With a reduction probability slightly over seed, yet limited reduction strength
657  // the generation goes into a stable repetition loop, yet with rather small graphs,
658  // comprised each of two seeds, two links and a single 2-fold join at exit,
659  // with exit and the two seeds of the following graph happening simultaneously.
660  graph.seedingRule(graph.rule().probability(0.6).maxVal(1))
661  .reductionRule(graph.rule().probability(0.75).maxVal(3))
662  .pruningRule(graph.rule_atJoin(1))
663  .setSeed(47)
664  .buildTopology()
665 // .printTopologyDOT()
666 // .printTopologyStatistics()
667  ;
668  CHECK (graph.getHash() == 0xB58904674ED84031);
669 
670  stat = graph.computeGraphStatistics();
671  CHECK (stat.levels == 104); //
672  CHECK (stat.indicators[STAT_NODE].pL == "2.4615385"_expect); // ∅ 2.5 nodes per level
673  CHECK (stat.indicators[STAT_SEED].frac == "0.40234375"_expect); // 40% seed
674  CHECK (stat.indicators[STAT_EXIT].frac == "0.19921875"_expect); // 20% exit
675  CHECK (stat.indicators[STAT_SEED].pL == "0.99038462"_expect); // resulting in 1 seed per level
676  CHECK (stat.indicators[STAT_EXIT].pL == "0.49038462"_expect); // ½ exit per level
677 
678 
679  // »short_segments_interleaved«
680  // Increased seed probability combined with overall seed value 0 ◁──── (crucial, other seeds produce larger graphs)
681  // produces what seems to be the best stable repetition loop:
682  // same shape as in preceding, yet interwoven by 2 steps
683  graph.seedingRule(graph.rule().probability(0.8).maxVal(1))
684  .reductionRule(graph.rule().probability(0.75).maxVal(3))
685  .pruningRule(graph.rule_atJoin(1))
686  .setSeed(0)
687  .buildTopology()
688 // .printTopologyDOT()
689 // .printTopologyStatistics()
690  ;
691  CHECK (graph.getHash() == 0x11B57D9E98FDF6DF);
692 
693  stat = graph.computeGraphStatistics();
694  CHECK (stat.levels == 55); // much denser arrangement due to stronger interleaving
695  CHECK (stat.indicators[STAT_NODE].pL == "4.6545455"_expect); // ∅ 4.7 nodes per level — almost twice as much
696  CHECK (stat.indicators[STAT_SEED].frac == "0.3984375"_expect); // 40% seed
697  CHECK (stat.indicators[STAT_EXIT].frac == "0.1953125"_expect); // 20% exit — same fractions
698  CHECK (stat.indicators[STAT_SEED].pL == "1.8545455"_expect); // 1.85 seed per level — higher density
699  CHECK (stat.indicators[STAT_EXIT].pL == "0.90909091"_expect); // 0.9 exit per level
700 
701 
702  // With just the addition of irregularity through shuffling on the reduction,
703  // a stable and tightly interwoven pattern of medium sized graphs is generated
704  graph.seedingRule(graph.rule().probability(0.8).maxVal(1))
705  .reductionRule(graph.rule().probability(0.75).maxVal(3).shuffle())
706  .pruningRule(graph.rule_atJoin(1))
707  .setSeed(0)
708  .buildTopology()
709 // .printTopologyDOT()
710 // .printTopologyStatistics()
711  ;
712  CHECK (graph.getHash() == 0x7C0453E7A4F6418D);
713 
714  stat = graph.computeGraphStatistics();
715  CHECK (stat.levels == 44); //
716  CHECK (stat.indicators[STAT_NODE].pL == "5.8181818"_expect); // ∅ 5.7 nodes per level
717  CHECK (stat.indicators[STAT_SEED].pL == "2.4318182"_expect); // ∅ 2.4 seeds
718  CHECK (stat.indicators[STAT_LINK].pL == "2.4772727"_expect); // ∅ 2.5 link nodes
719  CHECK (stat.indicators[STAT_EXIT].pL == "1"_expect); // ∅ 1 join/exit nodes — indicating stronger spread/reduction
720 
721 
722 
723  // This example uses another setup, without special rules;
724  // rather, seed, reduction and pruning are tuned to balance each other.
725  // The result is a regular interwoven pattern of very small graphs,
726  // slowly expanding yet stable under constriction of width.
727  // Predominant is a shape with two seeds on two levels, a single link and a 2-fold join;
728  // caused by width constriction, this becomes complemented by larger compounds at intervals.
729  graph.seedingRule(graph.rule().probability(0.8).maxVal(1))
730  .reductionRule(graph.rule().probability(0.75).maxVal(3))
731  .pruningRule(graph.rule().probability(0.55))
732  .setSeed(55) // ◁───────────────────────────────────────────── use 31 for width limited to 8 nodes
733  .buildTopology()
734 // .printTopologyDOT()
735 // .printTopologyStatistics()
736  ;
737  CHECK (graph.getHash() == 0x904A906B7859301A);
738 
739  stat = graph.computeGraphStatistics();
740  CHECK (stat.levels == 21); // ▶ resulting graph is very dense, hitting the parallelisation limit
741  CHECK (stat.indicators[STAT_NODE].pL == "12.190476"_expect); // ∅ more than 12 nodes per level !
742  CHECK (stat.indicators[STAT_SEED].pL == "6.8571429"_expect); // comprised of ∅ 6.9 seeds
743  CHECK (stat.indicators[STAT_LINK].pL == "2.3809524"_expect); // ∅ 2.4 links
744  CHECK (stat.indicators[STAT_JOIN].pL == "2.8095238"_expect); // ∅ 2.8 joins
745  CHECK (stat.indicators[STAT_EXIT].pL == "2.5714286"_expect); // ∅ 2.6 exits
746  CHECK (stat.indicators[STAT_SEED].frac == "0.5625"_expect ); // 56% seed
747  CHECK (stat.indicators[STAT_EXIT].frac == "0.2109375"_expect); // 21% exit
748 
749 
750 
751  // A slight parameters variation generates medium sized graphs, which are deep interwoven;
752  // the generation is slowly expanding, but becomes stable under width constriction
753  graph.seedingRule(graph.rule().probability(0.8).maxVal(1))
754  .reductionRule(graph.rule().probability(0.6).maxVal(5).minVal(2))
755  .pruningRule(graph.rule().probability(0.4))
756  .setSeed(42)
757  .buildTopology()
758 // .printTopologyDOT()
759 // .printTopologyStatistics()
760  ;
761  CHECK (graph.getHash() == 0x9453C56534FF9CD6);
762 
763  stat = graph.computeGraphStatistics();
764  CHECK (stat.levels == 26); //
765  CHECK (stat.indicators[STAT_NODE].pL == "9.8461538"_expect); // ∅ 9.8 nodes per level — ⅓ less dense
766  CHECK (stat.indicators[STAT_SEED].frac == "0.40234375"_expect); // 40% seed
767  CHECK (stat.indicators[STAT_LINK].frac == "0.453125"_expect); // 45% link
768  CHECK (stat.indicators[STAT_JOIN].frac == "0.109375"_expect ); // 11% joins
769  CHECK (stat.indicators[STAT_EXIT].frac == "0.08984375"_expect); // 8% exits — hinting at very strong reduction
770 
771 
772  // The same setup with different seeing produces a
773  // stable repetitive change of linear chain and small tree with 2 joins
774  graph.seedingRule(graph.rule().probability(0.8).maxVal(2))
775  .reductionRule(graph.rule().probability(0.6).maxVal(5).minVal(2))
776  .pruningRule(graph.rule().probability(0.42))
777  .setSeed(23)
778  .buildTopology()
779 // .printTopologyDOT()
780 // .printTopologyStatistics()
781  ;
782  CHECK (graph.getHash() == 0xA57727C2ED277C87);
783 
784  stat = graph.computeGraphStatistics();
785  CHECK (stat.levels == 129); //
786  CHECK (stat.indicators[STAT_NODE].pL == "1.9844961"_expect); // ∅ ~2 nodes per level — much lesser density
787  CHECK (stat.indicators[STAT_SEED].frac == "0.3359375"_expect); // 33% seed
788  CHECK (stat.indicators[STAT_LINK].frac == "0.4140625"_expect); // 42% link
789  CHECK (stat.indicators[STAT_JOIN].frac == "0.1640625"_expect); // 16% join
790  CHECK (stat.indicators[STAT_EXIT].frac == "0.171875"_expect); // 17% exit — only a 2:1 reduction on average
791 
792 
793  // With added shuffling in the seed rule, and under width constriction,
794  // an irregular sequence of small to large and strongly interwoven graphs emerges.
795  graph.seedingRule(graph.rule().probability(0.8).maxVal(2).shuffle())
796  .reductionRule(graph.rule().probability(0.6).maxVal(5).minVal(2))
797  .pruningRule(graph.rule().probability(0.42))
798  .setSeed(23)
799  .buildTopology()
800 // .printTopologyDOT()
801 // .printTopologyStatistics()
802  ;
803  CHECK (graph.getHash() == 0x4D0575F8BD269FC3);
804 
805  stat = graph.computeGraphStatistics();
806  CHECK (stat.levels == 20); // rather dense
807  CHECK (stat.indicators[STAT_NODE].pL == "12.8"_expect); // ∅ 12.8 nodes per level
808  CHECK (stat.indicators[STAT_SEED].pL == "7.65"_expect); // ∅ 7.7 seeds
809  CHECK (stat.indicators[STAT_LINK].pL == "3.15"_expect); // ∅ 3 links
810  CHECK (stat.indicators[STAT_JOIN].pL == "1.9"_expect); // ∅ 1.9 joins
811  CHECK (stat.indicators[STAT_EXIT].pL == "0.95"_expect); // ∅ ~1 exit per level
812 
813 
814 
815  // »chain_loadBursts«
816  // The final example attempts to balance expansion and reduction forces.
817  // Since reduction needs expanded nodes to work on, expansion always gets
818  // a head start and we need to tune reduction to slightly higher strength
819  // to ensure the graph width does not explode. The result is one single
820  // graph with increasingly complex connections, which can expand into
821  // width limitation at places, but also collapse to a single thread.
822  // The seed controls how fast the onset of the pattern happens.
823  // low values -> long single-chain prelude
824  // seed ≔ 55 -> prelude with 2 chains, then join, then onset at level 17
825  // high values -> massive onset quickly going into saturation
826  graph.expansionRule(graph.rule().probability(0.27).maxVal(4))
827  .reductionRule(graph.rule().probability(0.44).maxVal(6).minVal(2))
828  .seedingRule(graph.rule())
829  .pruningRule(graph.rule())
830  .setSeed(62)
831  .buildTopology()
832 // .printTopologyDOT()
833 // .printTopologyStatistics()
834  ;
835  CHECK (graph.getHash() == 0x25114F8770B1B78E);
836 
837  stat = graph.computeGraphStatistics();
838  CHECK (stat.levels == 30); // rather high concurrency
839  CHECK (stat.indicators[STAT_SEED].cnt == 1); // a single seed
840  CHECK (stat.indicators[STAT_EXIT].cnt == 4); // ...and 4 exit when running out of node space
841  CHECK (stat.indicators[STAT_NODE].pL == "8.5333333"_expect); // ∅ 8.25 nodes per level
842  CHECK (stat.indicators[STAT_FORK].frac == "0.16015625"_expect); // 16% forks
843  CHECK (stat.indicators[STAT_LINK].frac == "0.76171875"_expect); // 77% links
844  CHECK (stat.indicators[STAT_JOIN].frac == "0.1015625"_expect); // 10% joins
845  CHECK (stat.indicators[STAT_KNOT].frac == "0.0390625"_expect); // 3% »Knot« nodes which both join and fork
846  CHECK (stat.indicators[STAT_FORK].cLW == "0.43298744"_expect); // density centre of forks lies earlier
847  CHECK (stat.indicators[STAT_JOIN].cLW == "0.64466378"_expect); // while density centre of joins leans rather towards end
848  }
849 
850 
851 
852 
853 
854 
855 
856 
859  void
861  {
862  ComputationalLoad cpuLoad;
863  CHECK (cpuLoad.timeBase == 100us);
864 
865  double micros = cpuLoad.invoke();
866  CHECK (micros < 2000);
867  CHECK (micros > 2);
868 
869  cpuLoad.calibrate();
870 
871  micros = cpuLoad.invoke();
872  CHECK (micros < 133);
873  CHECK (micros > 80);
874 
875  micros = cpuLoad.benchmark();
876  CHECK (micros < 110);
877  CHECK (micros > 90);
878 
879  cpuLoad.useAllocation = true;
880  micros = cpuLoad.invoke();
881  CHECK (micros < 133);
882  CHECK (micros > 80);
883 
884  micros = cpuLoad.benchmark();
885  CHECK (micros < 110);
886  CHECK (micros > 90);
887 
888  cpuLoad.timeBase = 1ms;
889  cpuLoad.sizeBase *= 100;
890  cpuLoad.calibrate();
891 
892  cpuLoad.useAllocation = false;
893  micros = cpuLoad.invoke();
894  CHECK (micros > 900);
895  micros = cpuLoad.invoke(5);
896  CHECK (micros > 4600);
897  micros = cpuLoad.invoke(10);
898  CHECK (micros > 9500);
899  micros = cpuLoad.invoke(100);
900  CHECK (micros > 95000);
901 
902  cpuLoad.useAllocation = true;
903  micros = cpuLoad.invoke();
904  CHECK (micros > 900);
905  micros = cpuLoad.invoke(5);
906  CHECK (micros > 4600);
907  micros = cpuLoad.invoke(10);
908  CHECK (micros > 9500);
909  micros = cpuLoad.invoke(100);
910  CHECK (micros > 95000);
911  }
912 
913 
914 
923  void
925  {
926  ChainLoad16 graph{32};
927  graph.expansionRule(graph.rule().probability(0.8).maxVal(1))
928  .pruningRule(graph.rule().probability(0.6))
929  .weightRule((graph.rule().probability(0.5)))
930  .buildTopology();
931 
932  CHECK (8 == graph.allNodes().filter(isStartNode).count());
933  CHECK (16 == graph.allNodes().filter(isExitNode).count());
934 
935 
936  // verify computation of the globally combined exit hash
937  auto exitHashes = graph.allNodes()
938  .filter(isExitNode)
939  .transform([](Node& n){ return n.hash; })
940  .effuse();
941  CHECK (16 == exitHashes.size());
942 
943  size_t combinedHash{0};
944  for (uint i=0; i <16; ++i)
945  boost::hash_combine (combinedHash, exitHashes[i]);
946 
947  CHECK (graph.getHash() == combinedHash);
948  CHECK (graph.getHash() == 0x33B00C450215EB00);
949 
950 
951  // verify connectivity and local exit hashes
952  graph.allNodePtr().grouped<4>()
953  .foreach([&](auto group)
954  { // verify wiring pattern
955  // and the resulting exit hashes
956  auto& [a,b,c,d] = *group;
957  CHECK (isStart(a));
958  CHECK (isInner(b));
959  CHECK (not a->weight);
960  CHECK (not b->weight);
961  CHECK (isExit(c));
962  CHECK (isExit(d));
963  CHECK (c->hash == 0xAEDC04CFA2E5B999);
964  CHECK (d->hash == 0xAEDC04CFA2E5B999);
965  CHECK (c->weight == 4);
966  CHECK (d->weight == 4);
967  });
968 
969 
970  graph.setSeed(55).clearNodeHashes();
971  CHECK (graph.getSeed() == 55);
972  CHECK (graph.getHash() == 0);
973  graph.allNodePtr().grouped<4>()
974  .foreach([&](auto group)
975  { // verify hashes have been reset
976  auto& [a,b,c,d] = *group;
977  CHECK (a->hash == 55);
978  CHECK (b->hash == 0);
979  CHECK (b->hash == 0);
980  CHECK (b->hash == 0);
981  });
982 
983  graph.recalculate();
984  CHECK (graph.getHash() == 0x17427F67DBC8BCC0);
985  graph.allNodePtr().grouped<4>()
986  .foreach([&](auto group)
987  { // verify hashes were recalculated
988  // based on the new seed
989  auto& [a,b,c,d] = *group;
990  CHECK (a->hash == 55);
991  CHECK (c->hash == 0x7887993B0ED41395);
992  CHECK (d->hash == 0x7887993B0ED41395);
993  });
994 
995  // seeding and recalculation are reproducible
996  graph.setSeed(0).recalculate();
997  CHECK (graph.getHash() == 0x33B00C450215EB00);
998  graph.setSeed(55).recalculate();
999  CHECK (graph.getHash() == 0x17427F67DBC8BCC0);
1000  }
1001 
1002 
1003 
1006  void
1008  {
1009  double t1 =
1010  TestChainLoad{64}
1012  .buildTopology()
1014 
1015  double t2 =
1016  TestChainLoad{64}
1018  .buildTopology()
1019  .calcRuntimeReference(1ms);
1020 
1021  double t3 =
1022  TestChainLoad{256}
1024  .buildTopology()
1026 
1027  auto isWithin10Percent = [](double t, double r)
1028  {
1029  auto delta = abs (1.0 - t/r);
1030  return delta < 0.1;
1031  };
1032 
1033  // the test-graph has 64 Nodes,
1034  // each using the default load of 100µs
1035  CHECK (isWithin10Percent(t1, 6400)); // thus overall we should be close to 6.4ms
1036  CHECK (isWithin10Percent(t2, 10*t1)); // and the 10-fold load should yield 10-times
1037  CHECK (isWithin10Percent(t3, 4*t1)); // using 4 times as much nodes (64->256)
1038 
1039  // the time measurement uses a performance
1040  // which clears, re-seeds and calculates the complete graph
1041  auto graph =
1042  TestChainLoad{64}
1044  .buildTopology();
1045 
1046  CHECK (graph.getHash() == 0x554F5086DE5B0861);
1047 
1048  graph.clearNodeHashes();
1049  CHECK (graph.getHash() == 0);
1050 
1051  // this is used by the timing benchmark
1052  graph.performGraphSynchronously();
1053  CHECK (graph.getHash() == 0x554F5086DE5B0861);
1054 
1055  graph.clearNodeHashes();
1056  CHECK (graph.getHash() == 0);
1057 
1058  graph.calcRuntimeReference();
1059  CHECK (graph.getHash() == 0x554F5086DE5B0861);
1060  }
1061 
1062 
1063 
1070  void
1072  {
1073  TestChainLoad testLoad{64};
1075  .buildTopology()
1076 // .printTopologyDOT()
1077  ;
1078 
1079  // compute aggregated level data....
1080  auto level = testLoad.allLevelWeights().effuse();
1081  CHECK (level.size() == 26);
1082 
1083  // visualise and verify this data......
1084  auto node = testLoad.allNodePtr().effuse();
1085  _Fmt nodeFmt{"i=%-2d lev:%-2d w=%1d"};
1086  _Fmt levelFmt{" Σ%-2d Σw:%2d"};
1087  auto nodeStr = [&](uint i)
1088  {
1089  size_t l = node[i]->level;
1090  return string{nodeFmt % i % node[i]->level % node[i]->weight}
1091  + (i == level[l].endidx? string{levelFmt % level[l].nodes % level[l].weight}
1092  : string{" · · "});
1093  };
1094  // |idx--level--wght|-levelSum-------
1095  CHECK (nodeStr( 1) == "i=1 lev:1 w=0 Σ1 Σw: 0"_expect);
1096  CHECK (nodeStr( 2) == "i=2 lev:2 w=2 Σ1 Σw: 2"_expect);
1097  CHECK (nodeStr( 3) == "i=3 lev:3 w=0 Σ1 Σw: 0"_expect);
1098  CHECK (nodeStr( 4) == "i=4 lev:4 w=0 Σ1 Σw: 0"_expect);
1099  CHECK (nodeStr( 5) == "i=5 lev:5 w=0 Σ1 Σw: 0"_expect);
1100  CHECK (nodeStr( 6) == "i=6 lev:6 w=1 Σ1 Σw: 1"_expect);
1101  CHECK (nodeStr( 7) == "i=7 lev:7 w=2 Σ1 Σw: 2"_expect);
1102  CHECK (nodeStr( 8) == "i=8 lev:8 w=2 Σ1 Σw: 2"_expect);
1103  CHECK (nodeStr( 9) == "i=9 lev:9 w=1 · · "_expect);
1104  CHECK (nodeStr(10) == "i=10 lev:9 w=1 Σ2 Σw: 2"_expect);
1105  CHECK (nodeStr(11) == "i=11 lev:10 w=0 · · "_expect);
1106  CHECK (nodeStr(12) == "i=12 lev:10 w=0 Σ2 Σw: 0"_expect);
1107  CHECK (nodeStr(13) == "i=13 lev:11 w=0 · · "_expect);
1108  CHECK (nodeStr(14) == "i=14 lev:11 w=0 Σ2 Σw: 0"_expect);
1109  CHECK (nodeStr(15) == "i=15 lev:12 w=1 · · "_expect);
1110  CHECK (nodeStr(16) == "i=16 lev:12 w=1 Σ2 Σw: 2"_expect);
1111  CHECK (nodeStr(17) == "i=17 lev:13 w=1 · · "_expect);
1112  CHECK (nodeStr(18) == "i=18 lev:13 w=1 Σ2 Σw: 2"_expect);
1113  CHECK (nodeStr(19) == "i=19 lev:14 w=2 · · "_expect);
1114  CHECK (nodeStr(20) == "i=20 lev:14 w=2 Σ2 Σw: 4"_expect);
1115  CHECK (nodeStr(21) == "i=21 lev:15 w=0 Σ1 Σw: 0"_expect);
1116  CHECK (nodeStr(22) == "i=22 lev:16 w=1 Σ1 Σw: 1"_expect);
1117  CHECK (nodeStr(23) == "i=23 lev:17 w=3 Σ1 Σw: 3"_expect);
1118  CHECK (nodeStr(24) == "i=24 lev:18 w=0 · · "_expect);
1119  CHECK (nodeStr(25) == "i=25 lev:18 w=0 · · "_expect);
1120  CHECK (nodeStr(26) == "i=26 lev:18 w=0 · · "_expect);
1121  CHECK (nodeStr(27) == "i=27 lev:18 w=0 · · "_expect);
1122  CHECK (nodeStr(28) == "i=28 lev:18 w=0 Σ5 Σw: 0"_expect);
1123  CHECK (nodeStr(29) == "i=29 lev:19 w=2 · · "_expect);
1124  CHECK (nodeStr(30) == "i=30 lev:19 w=2 · · "_expect);
1125  CHECK (nodeStr(31) == "i=31 lev:19 w=2 · · "_expect);
1126  CHECK (nodeStr(32) == "i=32 lev:19 w=2 · · "_expect);
1127  CHECK (nodeStr(33) == "i=33 lev:19 w=2 Σ5 Σw:10"_expect);
1128  CHECK (nodeStr(34) == "i=34 lev:20 w=3 · · "_expect);
1129  CHECK (nodeStr(35) == "i=35 lev:20 w=2 Σ2 Σw: 5"_expect);
1130  CHECK (nodeStr(36) == "i=36 lev:21 w=1 · · "_expect);
1131  CHECK (nodeStr(37) == "i=37 lev:21 w=1 · · "_expect);
1132  CHECK (nodeStr(38) == "i=38 lev:21 w=3 Σ3 Σw: 5"_expect);
1133  CHECK (nodeStr(39) == "i=39 lev:22 w=3 · · "_expect);
1134  CHECK (nodeStr(40) == "i=40 lev:22 w=3 · · "_expect);
1135  CHECK (nodeStr(41) == "i=41 lev:22 w=0 · · "_expect);
1136  CHECK (nodeStr(42) == "i=42 lev:22 w=0 · · "_expect);
1137  CHECK (nodeStr(43) == "i=43 lev:22 w=0 · · "_expect);
1138  CHECK (nodeStr(44) == "i=44 lev:22 w=0 Σ6 Σw: 6"_expect);
1139  CHECK (nodeStr(45) == "i=45 lev:23 w=0 · · "_expect);
1140 
1141  // compute a weight factor for each level,
1142  // using the number of nodes, the weight sum and concurrency
1143  CHECK (level[19].nodes = 5); // ╭────────────────────────╢ concurrency
1144  CHECK (level[19].weight = 10); // ▽ ╭───────╢ boost by concurrency
1145  CHECK (computeWeightFactor(level[19], 1) == 10.0);// ▽
1146  CHECK (computeWeightFactor(level[19], 2) == 10.0 / (5.0/3));
1147  CHECK (computeWeightFactor(level[19], 3) == 10.0 / (5.0/2));
1148  CHECK (computeWeightFactor(level[19], 4) == 10.0 / (5.0/2));
1149  CHECK (computeWeightFactor(level[19], 5) == 10.0 / (5.0/1));
1150 
1151  // build a schedule sequence based on
1152  // summing up weight factors, with example concurrency ≔ 4
1153  uint concurrency = 4;
1154  auto steps = testLoad.levelScheduleSequence(concurrency).effuse();
1155  CHECK (steps.size() == 26);
1156 
1157  // for documentation/verification: show also the boost factor and the resulting weight factor
1158  auto boost = [&](uint i){ return level[i].nodes / std::ceil (double(level[i].nodes)/concurrency); };
1159  auto wfact = [&](uint i){ return computeWeightFactor(level[i], concurrency); };
1160 
1161  _Fmt stepFmt{"lev:%-2d nodes:%-2d Σw:%2d %4.1f Δ%5.3f ▿▿ %6.3f"};
1162  auto stepStr = [&](uint i){ return string{stepFmt % i % level[i].nodes % level[i].weight % boost(i) % wfact(i) % steps[i]}; };
1163 
1164  // boost wfactor steps
1165  CHECK (stepStr( 0) == "lev:0 nodes:1 Σw: 0 1.0 Δ0.000 ▿▿ 0.000"_expect);
1166  CHECK (stepStr( 1) == "lev:1 nodes:1 Σw: 0 1.0 Δ0.000 ▿▿ 0.000"_expect);
1167  CHECK (stepStr( 2) == "lev:2 nodes:1 Σw: 2 1.0 Δ2.000 ▿▿ 2.000"_expect);
1168  CHECK (stepStr( 3) == "lev:3 nodes:1 Σw: 0 1.0 Δ0.000 ▿▿ 2.000"_expect);
1169  CHECK (stepStr( 4) == "lev:4 nodes:1 Σw: 0 1.0 Δ0.000 ▿▿ 2.000"_expect);
1170  CHECK (stepStr( 5) == "lev:5 nodes:1 Σw: 0 1.0 Δ0.000 ▿▿ 2.000"_expect);
1171  CHECK (stepStr( 6) == "lev:6 nodes:1 Σw: 1 1.0 Δ1.000 ▿▿ 3.000"_expect);
1172  CHECK (stepStr( 7) == "lev:7 nodes:1 Σw: 2 1.0 Δ2.000 ▿▿ 5.000"_expect);
1173  CHECK (stepStr( 8) == "lev:8 nodes:1 Σw: 2 1.0 Δ2.000 ▿▿ 7.000"_expect);
1174  CHECK (stepStr( 9) == "lev:9 nodes:2 Σw: 2 2.0 Δ1.000 ▿▿ 8.000"_expect);
1175  CHECK (stepStr(10) == "lev:10 nodes:2 Σw: 0 2.0 Δ0.000 ▿▿ 8.000"_expect);
1176  CHECK (stepStr(11) == "lev:11 nodes:2 Σw: 0 2.0 Δ0.000 ▿▿ 8.000"_expect);
1177  CHECK (stepStr(12) == "lev:12 nodes:2 Σw: 2 2.0 Δ1.000 ▿▿ 9.000"_expect);
1178  CHECK (stepStr(13) == "lev:13 nodes:2 Σw: 2 2.0 Δ1.000 ▿▿ 10.000"_expect);
1179  CHECK (stepStr(14) == "lev:14 nodes:2 Σw: 4 2.0 Δ2.000 ▿▿ 12.000"_expect);
1180  CHECK (stepStr(15) == "lev:15 nodes:1 Σw: 0 1.0 Δ0.000 ▿▿ 12.000"_expect);
1181  CHECK (stepStr(16) == "lev:16 nodes:1 Σw: 1 1.0 Δ1.000 ▿▿ 13.000"_expect);
1182  CHECK (stepStr(17) == "lev:17 nodes:1 Σw: 3 1.0 Δ3.000 ▿▿ 16.000"_expect);
1183  CHECK (stepStr(18) == "lev:18 nodes:5 Σw: 0 2.5 Δ0.000 ▿▿ 16.000"_expect);
1184  CHECK (stepStr(19) == "lev:19 nodes:5 Σw:10 2.5 Δ4.000 ▿▿ 20.000"_expect);
1185  CHECK (stepStr(20) == "lev:20 nodes:2 Σw: 5 2.0 Δ2.500 ▿▿ 22.500"_expect);
1186  CHECK (stepStr(21) == "lev:21 nodes:3 Σw: 5 3.0 Δ1.667 ▿▿ 24.167"_expect);
1187  CHECK (stepStr(22) == "lev:22 nodes:6 Σw: 6 3.0 Δ2.000 ▿▿ 26.167"_expect);
1188  CHECK (stepStr(23) == "lev:23 nodes:6 Σw: 6 3.0 Δ2.000 ▿▿ 28.167"_expect);
1189  CHECK (stepStr(24) == "lev:24 nodes:10 Σw: 9 3.3 Δ2.700 ▿▿ 30.867"_expect);
1190  CHECK (stepStr(25) == "lev:25 nodes:3 Σw: 4 3.0 Δ1.333 ▿▿ 32.200"_expect);
1191  }
1192 
1193 
1194 
1195 
1206  void
1208  {
1209  array<Node,4> nodes;
1210  auto& [s,p1,p2,e] = nodes;
1211  s.addSucc(p1)
1212  .addSucc(p2);
1213  e.addPred(p1)
1214  .addPred(p2);
1215  s.level = 0;
1216  p1.level = p2.level = 1;
1217  e.level = 2;
1218  CHECK (e.hash == 0);
1219  for (Node& n : nodes)
1220  n.calculate();
1221  CHECK (e.hash == 0x6A5924BA3389D7C);
1222 
1223 
1224  // now do the same invoked as »render job«
1225  for (Node& n : nodes)
1226  n.hash = 0;
1227  s.level = 0;
1228  p1.level = 1;
1229  p2.level = 1;
1230  e.level = 2;
1231 
1232  RandomChainCalcFunctor<16> chainJob{nodes[0]};
1233  Job job0{chainJob
1234  ,chainJob.encodeNodeID(0)
1235  ,chainJob.encodeLevel(0)};
1236  Job job1{chainJob
1237  ,chainJob.encodeNodeID(1)
1238  ,chainJob.encodeLevel(1)};
1239  Job job2{chainJob
1240  ,chainJob.encodeNodeID(2)
1241  ,chainJob.encodeLevel(1)};
1242  Job job3{chainJob
1243  ,chainJob.encodeNodeID(3)
1244  ,chainJob.encodeLevel(2)};
1245 
1246  CHECK (e.hash == 0);
1247  job0.triggerJob();
1248  // ◁───────────────────────────────────────────── Note: fail to invoke some predecessor....
1249  job2.triggerJob();
1250  job3.triggerJob();
1251  CHECK (e.hash != 0x6A5924BA3389D7C);
1252 
1253  e.hash = 0;
1254  job1.triggerJob(); // recalculate missing part of the graph...
1255  job3.triggerJob();
1256  CHECK (e.hash == 0x6A5924BA3389D7C);
1257 
1258  job3.triggerJob(); // Hash calculations are *not* idempotent
1259  CHECK (e.hash != 0x6A5924BA3389D7C);
1260 
1261 
1262  // use the »planing job« to organise the calculations:
1263  // Let the callbacks create a clone — which at the end should generate the same hash
1264  array<Node,4> clone;
1265  size_t lastTouched(-1);
1266  size_t lastNode (-1);
1267  size_t lastLevel(-1);
1268  bool shallContinue{false};
1269  auto getNodeIdx = [&](Node* n) { return n - &nodes[0]; };
1270 
1271  // callback-λ rigged for test....
1272  // Instead of invoking the Scheduler, here we replicate the node structure
1273  auto disposeStep = [&](size_t idx, size_t level)
1274  {
1275  Node& n = clone[idx];
1276  n.clear();
1277  n.level = level;
1278  lastTouched = idx;
1279  };
1280  auto setDependency = [&](Node* pred, Node* succ)
1281  {
1282  size_t predIdx = getNodeIdx(pred);
1283  size_t succIdx = getNodeIdx(succ);
1284  // replicate this relation into the clone array
1285  clone[predIdx].addSucc(clone[succIdx]);
1286  };
1287  auto continuation = [&](size_t, size_t nodeDone, size_t levelDone, bool work_left)
1288  {
1289  lastNode =nodeDone;
1290  lastLevel = levelDone;
1291  shallContinue = work_left;
1292  };
1293  // build a JobFunctor for the planning step(s)
1294  RandomChainPlanFunctor<16> planJob{nodes.front(), nodes.size()
1295  ,disposeStep
1296  ,setDependency
1297  ,continuation};
1298  Job jobP1{planJob
1299  ,planJob.encodeNodeID(1)
1300  ,Time::ANYTIME};
1301  Job jobP2{planJob
1302  ,planJob.encodeNodeID(5)
1303  ,Time::ANYTIME};
1304 
1305  jobP1.triggerJob();
1306  CHECK (lastLevel = 1);
1307  CHECK (lastTouched = 2);
1308  CHECK (lastTouched == lastNode);
1309  Node* lastN = &clone[lastTouched];
1310  CHECK (lastN->level == lastLevel);
1311  CHECK ( isnil (lastN->succ));
1312  CHECK (not isnil (lastN->pred));
1313  CHECK (shallContinue);
1314 
1315  jobP2.triggerJob();
1316  CHECK (lastLevel = 3);
1317  CHECK (lastTouched = 3);
1318  CHECK (lastTouched == lastNode);
1319  lastN = &clone[lastTouched];
1320  CHECK (lastN->level == 2);
1321  CHECK (lastN->level < lastLevel);
1322  CHECK ( isnil (lastN->succ));
1323  CHECK (not isnil (lastN->pred));
1324  CHECK (not shallContinue);
1325 
1326  // all clone nodes should be wired properly now
1327  CHECK (lastN->hash == 0);
1328  for (Node& n : clone)
1329  n.calculate();
1330  CHECK (lastN->hash == 0x6A5924BA3389D7C);
1331  }
1332  };
1333 
1334 
1336  LAUNCHER (TestChainLoad_test, "unit engine");
1337 
1338 
1339 
1340 }}} // namespace vault::gear::test
static const Time ANYTIME
border condition marker value. ANYTIME <= any time value
Definition: timevalue.hpp:313
const StatKey STAT_NODE
all nodes
const StatKey STAT_LINK
1:1 linking node
const StatKey STAT_SEED
seed node
const StatKey STAT_KNOT
knot (joins and forks)
Definition: trait.hpp:60
Definition: run.hpp:40
const StatKey STAT_EXIT
exit node
Front-end for printf-style string template interpolation.
double invoke(uint scaleStep=1)
cause a delay by computational load
TestChainLoad && buildTopology()
Use current configuration and seed to (re)build Node connectivity.
Generate synthetic computation load for Scheduler performance tests.
A Generator for synthetic Render Jobs for Scheduler load testing.
A front-end for using printf-style formatting.
»Scheduler-Service« : coordinate render activities.
Definition: scheduler.hpp:213
Simplistic test class runner.
Render JobFunctor to invoke the calculation of a single Node.
Tiny helper functions and shortcuts to be used everywhere Consider this header to be effectively incl...
double computeWeightFactor(LevelWeight const &lw, uint concurrency)
simplified model for expense of a level of nodes, computed concurrently.
double calcRuntimeReference(microseconds timeBase=LOAD_DEFAULT_TIME, size_t sizeBase=0, size_t repeatCnt=GRAPH_BENCHMARK_RUNS)
Conduct a number of benchmark runs over processing the Graph synchronously.
TestChainLoad< 16 > ChainLoad16
shorthand for specific parameters employed by the following tests
A collection of frequently used helper functions to support unit testing.
TestChainLoad && configureShape_chain_loadBursts()
preconfigured topology: single graph with massive »load bursts«
const StatKey STAT_JOIN
joining node
Statistic computeGraphStatistics()
Operator on TestChainLoad to evaluate current graph connectivity.
Definition of a render job.
const StatKey STAT_FORK
forking node
TestChainLoad && clearNodeHashes()
Clear node hashes and propagate seed value.
TestChainLoad && configureShape_short_segments3_interleaved()
preconfigured topology: simple interwoven 3-step graph segments
Render JobFunctor to perform chunk wise planning of Node jobs to calculate a complete Chain-Load grap...
Individual frame rendering task, forwarding to a closure.
Definition: job.h:268
Vault-Layer implementation namespace root.
auto allLevelWeights()
calculate node weights aggregated per level
TestChainLoad && performGraphSynchronously(microseconds timeBase=LOAD_DEFAULT_TIME, size_t sizeBase=0)
Emulate complete graph processing in a single threaded loop.
Collector and aggregator for performance data.
A calibratable CPU load to be invoked from a node job functor.
bool isSameObject(A const &a, B const &b)
compare plain object identity, based directly on the referee&#39;s memory identities. ...
Definition: util.hpp:421